CORRECTIVE AND PREVENTIVE ACTION

Background of terms

Corrective and preventive actions are powerful tools of continuous improvement in quality management systems such as ISO 17025 and ISO 9001.

Corrective action is an activity that should be used to stop the re-occurrence of non-conformities.

Preventive action is an activity that should give the opportunity to prevent potential non-conformities.

Corrective action has to be initiated when a problem exists. If such a problem does not exist but there is a possibility for it, preventive action has to be taken.

Remedial action can easily be confused with corrective action. Remedial action is taken to rectify the mistake. Corrective action is an action to eliminate defined non-conformities.

Example:
To recall a test report and make necessary changes is a remedial action because making changes in the report does not help to prevent re-occurrence of non-conformities.

Corrective and preventive actions are defined in ISO 17025 article 4.11 and 4.12, respectively.

Identification and classification of non-conformities

Identification of non-conformities is the key process and should be well defined in quality systems.

Non-conforming testing and/or calibration work is described in article 4.9 of ISO 17025. Other non-conformities should also be detected and classified from customer complaints, customer feedbacks, internal audits, external audits and any deviation during the maintenance of the quality system.

It should always be considered whether the collected data is useful for the purpose. If data is collected and classified correctly, this activity will help to identify the problems clearly.

During the classification process, the priority and significance of non-conformities should be evaluated.
The audit, client or normative criteria is assessed against the evidence found by the client, the internal/external auditor, or laboratory staff. The assessment can conclude that there are several different cases:

STRONG POINT:
The evidence shows an OVERFULFILMENT of the criteria

NO REMARK:
The evidence shows a FULFILMENT of the criteria

WEAK POINT:
The evidence shows that IN THE FUTURE there would be an UNDERFULFILMENT. Include a COMMENT in the report

DEVIATION/NON-FULFILMENT:
There is an UNDERFULFILMENT:
- Severe underfulfilment: NONCONFORMITY
- Slight underfulfilment: OBSERVATION

Possible **IMPROVEMENT ACTION**

IMPROVEMENT ACTION OR PREVENTIVE ACTION

CORRECTION &/OR CORRECTIVE ACTION
Process steps of corrective action

- **Cause analysis, root cause**

ISO 17025 Standard indicates that the corrective action process starts with a cause analysis. Cause analysis is the important and most difficult step in the process. Any kind of mistake in this step may cause the implementation of wrong corrective action and does not avoid re-occurrence of non-conformities.

The initial step of cause analysis is organizing a “corrective action team” consisting of laboratory staff familiar with the problem.

All potential causes should be evaluated by brainstorming discussions by the “corrective action team” in order to define the root cause. The team should consider all circumstances related to the problem such as personnel, equipment, chemicals, training etc. but they should always remember that the primary aim is to find the root cause.

- **Analyzing non-conformities effects and needs for action**

The impact of non-conformities on laboratory work should be analyzed carefully. The possibility of recurrence and end effect on a routine procedure should be determined. Some of the non-conformities may not have the chance of recurrence or no effect to the procedures. The Corrective Action Team should decide what kind of action has to be taken.

Corrective actions can be implemented either during one special event or during recurrent events according to the severity and the priorities of non-conformities.

- **Selection and implementation of corrective actions**

The laboratory should implement corrective actions after the decision of the Corrective Action Team. Necessary conditions for corrective action should be clearly defined. The laboratory management should be confident about the effectiveness and the performance of the corrective action.

- **Monitoring of corrective actions**

The result of the corrective actions should be recorded and monitored for determining the effectiveness of the corrective actions. Monitoring should verify the successful completion of the identified actions and assess the effectiveness of the actions taken.

Monitoring of reoccurrences of non-conformities after the implementation of corrective actions is one of the key performance indicators for corrective action process.

- **Additional audits**

ISO 17025 requires additional audits if identified non-conformities cause serious doubts about a laboratory’s compliance with standards, its own policies and its own procedures.

Process steps of preventive action

- **Data collection for potential non-conformities**

The laboratory should determine the objectives of processes or activities in their quality system and analyze the critical factors which effect the achievement of these objectives. A “preventive action team” should be organized and the adverse effects to the processes or activities should be carefully evaluated and classified according to their severity and priority.
- **Cause analysis for root cause for potential non-conformities**

Impact assessment of the factors influencing the processes and activities should be undertaken. The causes have to be determined and the root cause of potential non-conformities should be defined by the preventive action team.

- **Selection and implementation of preventive actions**

The laboratory should implement actions to prevent the defined potential non-conformities. These actions should detect and prevent adverse effects on laboratory performance before they happen.

- **Monitoring of preventive action**

The laboratory should monitor the results of preventive actions to reduce the possibility of occurrence of defined non-conformities. Preventative action processes should be reconsidered if a nonconformity happens subsequently.

- **Records of corrective and preventive actions**

Records should be kept of all steps of corrective and preventive actions.

- **Evaluation of corrective and preventive actions**

The laboratory shall ensure that a quality team evaluates periodically all corrective and preventive actions that have been performed and their results. Results of this evaluation should be included in the management review.

References

ANNEX

CORRECTIVE ACTION FORM

<table>
<thead>
<tr>
<th>NO</th>
<th>DATE</th>
<th>REQUESTED BY</th>
<th>RELATED EMPLOYEE</th>
<th>RELATED DEPARTMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>011</td>
<td>11.02.2011</td>
<td>Quality Manager</td>
<td>Instrumental Laboratory Chief</td>
<td>Technical Department</td>
</tr>
</tbody>
</table>

Non-conformities

Customer objects to vitamin A results in 12345 sample. Result is 0.64 mg/kg.

Causes of non-conformities

The analysis process was checked by the analyst and the Instrumental Laboratory Chief against the written and original method (EN 12823-1:2000). Calculation steps were controlled by following the described method. HPLC conditions (column, flow rate, mobile phase) were suitable. Differences between parallel results were lower than the repeatability limit. The last quality control sample (spiked sample) had been worked one-week (02.02.2011) prior to the study sample. The results were within acceptable limits.

During the conversation with the analyst, it was discovered that the standard concentration was not controlled with a spectrophotometer before the analysis. Although this control is written down in the test procedure, the analyst skipped this step and relied on the last quality control study.

The analysis was repeated and the standard concentration was controlled with a spectrophotometer. The result has changed to 0.72 mg/kg, which was inside the customer expectation range.

Root cause: The standard concentration has decreased and was not controlled during the analysis.

Planned correction (remedial action)

The report was revised and new report was sent to the customer.

Do the non-conformities result in a need to implement corrective action?

Yes [x] No []

Planned corrective action

The analysis methods will be revised and a standard control sheet for vitamin A will be added to the procedure. Experience which was gained from this non-conformity is written in the analysis methods under the headline “important note”. Training will be given to each employee in the laboratory regarding the importance of standard concentration control.

<table>
<thead>
<tr>
<th>Planned finishing date</th>
<th>Finished date</th>
<th>Evaluated by</th>
</tr>
</thead>
</table>

Evidence for effectiveness

Revision of the analysis method has been controlled.
Training records were checked.
Spectrophotometer control has been applied by the analyst and checked with the method for evaluation.
NON-CONFORMITIES

Last internal quality control study exceeded the action limit of the protein analysis.

CAUSES OF NON-CONFORMITIES

The analysis process was checked by the analyst and the Analytical Chemistry Laboratory Chief by checking the written and original method. The method steps, raw data and calculations were suitable to the methods.

- If there was a problem with the distillation equipment the results should be lower than expected. But in this case the results were higher. It seems that the problem is not related with the distillation equipment.

- The chemicals used in the analysis were evaluated. A commercial catalyst tablet was used in the analysis. The analysis was repeated with a commercial catalyst tablet and 15 g K_2SO_4, 0.9 CuSO_4.5H_2O. The results obtained by using a different tablet were higher than the other catalyst in quality control samples (catalyst tablet: 12.9 %, 15 g K_2SO_4, 0.9 CuSO_4.5H_2O: 11.2 %). The result of 15 g K_2SO_4, 0.9 CuSO_4.5H_2O was within the limit. These results indicate that there seems to be a problem with the catalyst tablet.

- All samples taken between the last good result from the internal quality control samples to the bad result were reexamined. There were 20 samples within this time period. The results of three samples had been sent to the customer. All samples and the quality control sample were repeated with 15 g K_2SO_4 and 0.9 CuSO_4.5H_2O. The results obtained by both catalysts are given below:

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Sample type</th>
<th>Catalyst tablet results</th>
<th>15 g K_2SO_4 and 0.9 CuSO_4.5H_2O results</th>
<th>Sample No</th>
<th>Sample type</th>
<th>Catalyst tablet results</th>
<th>15 g K_2SO_4 and 0.9 CuSO_4.5H_2O results</th>
</tr>
</thead>
<tbody>
<tr>
<td>9765</td>
<td>Pasta</td>
<td>12.8 %</td>
<td>10.7 %</td>
<td>10057</td>
<td>Pasta</td>
<td>12.7 %</td>
<td>10.6 %</td>
</tr>
<tr>
<td>9772</td>
<td>Dried bread</td>
<td>12.5 %</td>
<td>10.2 %</td>
<td>10062</td>
<td>Pasta</td>
<td>12.3 %</td>
<td>10.2 %</td>
</tr>
<tr>
<td>9973</td>
<td>Dried bread</td>
<td>12.9 %</td>
<td>10.5 %</td>
<td>10063</td>
<td>Pasta</td>
<td>12.9 %</td>
<td>10.7 %</td>
</tr>
<tr>
<td>9974</td>
<td>Dried bread</td>
<td>12.7 %</td>
<td>10.4 %</td>
<td>10064</td>
<td>Pasta</td>
<td>12.5 %</td>
<td>10.2 %</td>
</tr>
<tr>
<td>9976</td>
<td>Wheat flour</td>
<td>13.1 %</td>
<td>11.3 %</td>
<td>10074</td>
<td>Wheat flour</td>
<td>13.3 %</td>
<td>11.4 %</td>
</tr>
<tr>
<td>10021</td>
<td>Pasta</td>
<td>11.8 %</td>
<td>9.7 %</td>
<td>10077</td>
<td>Pasta</td>
<td>11.6 %</td>
<td>9.6 %</td>
</tr>
<tr>
<td>10047</td>
<td>Wheat flour</td>
<td>12.9 %</td>
<td>10.6 %</td>
<td>10079</td>
<td>Wheat flour</td>
<td>12.9 %</td>
<td>10.6 %</td>
</tr>
<tr>
<td>10048</td>
<td>Wheat flour</td>
<td>13.1 %</td>
<td>10.9 %</td>
<td>10080</td>
<td>Wheat flour</td>
<td>13.1 %</td>
<td>10.9 %</td>
</tr>
<tr>
<td>10049</td>
<td>Wheat flour</td>
<td>12.9 %</td>
<td>10.7 %</td>
<td>10081</td>
<td>Wheat flour</td>
<td>12.9 %</td>
<td>10.7 %</td>
</tr>
<tr>
<td>10051</td>
<td>Wheat flour</td>
<td>12.8 %</td>
<td>10.6 %</td>
<td>10082</td>
<td>Wheat flour</td>
<td>12.7 %</td>
<td>10.7 %</td>
</tr>
</tbody>
</table>
Root cause: There is a problem with the catalyst tablet

Planned correction (remedial action)
The reports of three samples were revised and new reports were sent to the customer. Other results were corrected in the LIMS system.

Do the non-conformities result in a need to implement corrective action?

Yes [X] No []

Planned corrective action
Each lot of catalyst tablets will be used with QM samples and be compared with 15 g K₂SO₄, 0.9 CuSO₄·5H₂O before being used in routine studies.
QM study frequency will be decreased to one in ten samples. The analysis method will be revised and rules for using commercial catalyst tablets will be included in the procedure.
Training will be given to all employees that can perform this analysis

<table>
<thead>
<tr>
<th>Planned finishing date</th>
<th>Finished date</th>
<th>Evaluated by</th>
</tr>
</thead>
</table>

Evidence for effectiveness
QM sample records have been checked; there was a new lot of catalyst tablets; comparative results have been recorded in the laboratory book.
Training records have been checked and discussed with the analysts.
CORRECTIVE ACTION FORM

<table>
<thead>
<tr>
<th>NO</th>
<th>DATE</th>
<th>REQUESTED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>036</td>
<td>14.07.2010</td>
<td>Quality Manager</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RELATED EMPLOYEE</th>
<th>RELATED DEPARTMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiology Laboratory Chief</td>
<td>Technical Department</td>
</tr>
</tbody>
</table>

Non-conformities

Proficiency test results of Fecal *coli*form and *E. coli* results were -2.3 and -2.2 respectively in water samples.

Causes of non-conformities

The analysis process was checked by the analyst and the Microbiology Laboratory Chief against the written and original method. The sample arrived at the laboratory on 04th June 2010 and was put into the refrigerator. It was forgotten to analyze it until 14th June, 2010 (last week).

The last internal quality control study (Shewhart and range chart) was applied on 01st June 2010, before the sample was analyzed and also on 15th June 2010 and 30th June 2010, after the sample had been analyzed the same month. The results were appropriate to the values indicated in the Shewhart and range chart. Other quality control studies such as counting colonies, air and surface control results were also suitable.

There were no positive Fecal *coli*form and *E. coli* results between June 4, 2010 and June 15, 2010 in the water samples.

Root cause: The sample has been analyzed in the last few days and these may have caused problems in the results.

Planned correction (remedial action)

There is no remedial action.

Do the non-conformities result in a need to implement corrective action?

Yes ☑ No ☐

Planned corrective action

One analyst will be responsible to follow each proficiency test sample when samples come to the laboratory. This analyst will trace the sample and plan the study with other analysts.

<table>
<thead>
<tr>
<th>Planned finishing date</th>
<th>Finished date</th>
<th>Evaluated by</th>
</tr>
</thead>
</table>

Evidence for effectiveness

New results are 1.6 and 1.3 for Fecal *coli*form and *E. coli*, respectively. The assigned employee was recorded in the laboratory book.
<table>
<thead>
<tr>
<th>NO</th>
<th>DATE</th>
<th>REQUESTED BY</th>
<th>RELATED EMPLOYEE</th>
<th>RELATED DEPARTMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>02.03.2011</td>
<td>Technical Manager</td>
<td>All analysts</td>
<td>Technical Department</td>
</tr>
</tbody>
</table>

Potential non-conformities

The Excel programme was not used effectively. This extended the time period in mathematical calculations (Example: statistical calculations) and may have caused miscalculations especially when manual methods are used.

Causes of potential non-conformities

Root cause: Lack of training amongst analysts in using Excel.

Planned preventive action

Training will be planned in 2 steps first step: give training to analysts to gain experience in using the Excel programme; second step: advanced course in Excel, including statistical calculations, for analysts to gain more experience with the programme.

<table>
<thead>
<tr>
<th>Planned finishing date</th>
<th>Finished date</th>
<th>Evaluated by</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.05.2011</td>
<td>02.05.2011</td>
<td>02.05.2011 /Technical Manager</td>
</tr>
</tbody>
</table>

Evidence for effectiveness

Training records have been checked and discussed with analysts.